Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(4): 80, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472532

RESUMO

KEY MESSAGE: We propose an "enviromics" prediction model for recommending cultivars based on thematic maps aimed at decision-makers. Parsimonious methods that capture genotype-by-environment interaction (GEI) in multi-environment trials (MET) are important in breeding programs. Understanding the causes and factors of GEI allows the utilization of genotype adaptations in the target population of environments through environmental features and factor-analytic (FA) models. Here, we present a novel predictive breeding approach called GIS-FA, which integrates geographic information systems (GIS) techniques, FA models, partial least squares (PLS) regression, and enviromics to predict phenotypic performance in untested environments. The GIS-FA approach enables: (i) the prediction of the phenotypic performance of tested genotypes in untested environments, (ii) the selection of the best-ranking genotypes based on their overall performance and stability using the FA selection tools, and (iii) the creation of thematic maps showing overall or pairwise performance and stability for decision-making. We exemplify the usage of the GIS-FA approach using two datasets of rice [Oryza sativa (L.)] and soybean [Glycine max (L.) Merr.] in MET spread over tropical areas. In summary, our novel predictive method allows the identification of new breeding scenarios by pinpointing groups of environments where genotypes demonstrate superior predicted performance. It also facilitates and optimizes cultivar recommendations by utilizing thematic maps.


Assuntos
Interação Gene-Ambiente , Oryza , Meio Ambiente , Sistemas de Informação Geográfica , Modelos Genéticos , Melhoramento Vegetal , Genótipo , Oryza/genética
2.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38243647

RESUMO

Neglecting genotype-by-environment interactions in multienvironment trials (MET) increases the risk of flawed cultivar recommendations for growers. Recent advancements in probability theory coupled with cutting-edge software offer a more streamlined decision-making process for selecting suitable candidates across diverse environments. Here, we present the user-friendly ProbBreed package in R, which allows breeders to calculate the probability of a given genotype outperforming competitors under a Bayesian framework. This article outlines the package's basic workflow and highlights its key features, ranging from MET model fitting to estimating the per se and pairwise probabilities of superior performance and stability for selection candidates. Remarkably, only the selection intensity is required to compute these probabilities. By democratizing this complex yet efficient methodology, ProbBreed aims to enhance decision-making and ultimately contribute to more accurate cultivar recommendations in breeding programs.


Assuntos
Modelos Genéticos , Software , Teorema de Bayes , Genótipo
3.
Theor Appl Genet ; 136(12): 252, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987845

RESUMO

KEY MESSAGE: Simulations demonstrated that estimates of realized genetic gain from linear mixed models using regional trials are biased to some degree. Thus, we recommend multiple selected models to obtain a range of reasonable estimates. Genetic improvements of discrete characteristics are obvious and easy to demonstrate, while quantitative traits require reliable and accurate methods to disentangle the confounding genetic and non-genetic components. Stochastic simulations of soybean [Glycine max (L.) Merr.] breeding programs were performed to evaluate linear mixed models to estimate the realized genetic gain (RGG) from annual multi-environment trials (MET). True breeding values were simulated under an infinitesimal model to represent the genetic contributions to soybean seed yield under various MET conditions. Estimators were evaluated using objective criteria of bias and linearity. Covariance modeling and direct versus indirect estimation-based models resulted in a substantial range of estimated values, all of which were biased to some degree. Although no models produced unbiased estimates, the three best-performing models resulted in an average bias of [Formula: see text] kg/ha[Formula: see text]/yr[Formula: see text] ([Formula: see text] bu/ac[Formula: see text]/yr[Formula: see text]). Rather than relying on a single model to estimate RGG, we recommend the application of several models with minimal and directional bias. Further, based on the parameters used in the simulations, we do not think it is appropriate to use any single model to compare breeding programs or quantify the efficiency of proposed new breeding strategies. Lastly, for public soybean programs breeding for maturity groups II and III in North America, the estimated RGG values ranged from 18.16 to 39.68 kg/ha[Formula: see text]/yr[Formula: see text] (0.27-0.59 bu/ac[Formula: see text]/yr[Formula: see text]) from 1989 to 2019. These results provide strong evidence that public breeders have significantly improved soybean germplasm for seed yield in the primary production areas of North America.


Assuntos
Melhoramento Vegetal , /genética , Citoplasma , Modelos Lineares , Sementes/genética
4.
Genetics ; 221(2)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35451475

RESUMO

Photosynthesis is a key target to improve crop production in many species including soybean [Glycine max (L.) Merr.]. A challenge is that phenotyping photosynthetic traits by traditional approaches is slow and destructive. There is proof-of-concept for leaf hyperspectral reflectance as a rapid method to model photosynthetic traits. However, the crucial step of demonstrating that hyperspectral approaches can be used to advance understanding of the genetic architecture of photosynthetic traits is untested. To address this challenge, we used full-range (500-2,400 nm) leaf reflectance spectroscopy to build partial least squares regression models to estimate leaf traits, including the rate-limiting processes of photosynthesis, maximum Rubisco carboxylation rate, and maximum electron transport. In total, 11 models were produced from a diverse population of soybean sampled over multiple field seasons to estimate photosynthetic parameters, chlorophyll content, leaf carbon and leaf nitrogen percentage, and specific leaf area (with R2 from 0.56 to 0.96 and root mean square error approximately <10% of the range of calibration data). We explore the utility of these models by applying them to the soybean nested association mapping population, which showed variability in photosynthetic and leaf traits. Genetic mapping provided insights into the underlying genetic architecture of photosynthetic traits and potential improvement in soybean. Notably, the maximum Rubisco carboxylation rate mapped to a region of chromosome 19 containing genes encoding multiple small subunits of Rubisco. We also mapped the maximum electron transport rate to a region of chromosome 10 containing a fructose 1,6-bisphosphatase gene, encoding an important enzyme in the regeneration of ribulose 1,5-bisphosphate and the sucrose biosynthetic pathway. The estimated rate-limiting steps of photosynthesis were low or negatively correlated with yield suggesting that these traits are not influenced by the same genetic mechanisms and are not limiting yield in the soybean NAM population. Leaf carbon percentage, leaf nitrogen percentage, and specific leaf area showed strong correlations with yield and may be of interest in breeding programs as a proxy for yield. This work is among the first to use hyperspectral reflectance to model and map the genetic architecture of the rate-limiting steps of photosynthesis.


Assuntos
Ribulose-Bifosfato Carboxilase , Carbono , Nitrogênio/metabolismo , Fotossíntese/genética , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , /genética
5.
Theor Appl Genet ; 135(4): 1385-1399, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35192008

RESUMO

KEY MESSAGE: We propose using probability concepts from Bayesian models to leverage a more informed decision-making process toward cultivar recommendation in multi-environment trials. Statistical models that capture the phenotypic plasticity of a genotype across environments are crucial in plant breeding programs to potentially identify parents, generate offspring, and obtain highly productive genotypes for target environments. In this study, our aim is to leverage concepts of Bayesian models and probability methods of stability analysis to untangle genotype-by-environment interaction (GEI). The proposed method employs the posterior distribution obtained with the No-U-Turn sampler algorithm to get Hamiltonian Monte Carlo estimates of adaptation and stability probabilities. We applied the proposed models in two empirical tropical datasets. Our findings provide a basis to enhance our ability to consider the uncertainty of cultivar recommendation for global or specific adaptation. We further demonstrate that probability methods of stability analysis in a Bayesian framework are a powerful tool for unraveling GEI given a defined intensity of selection that results in a more informed decision-making process toward cultivar recommendation in multi-environment trials.


Assuntos
Meio Ambiente , Melhoramento Vegetal , Teorema de Bayes , Genótipo , Melhoramento Vegetal/métodos , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...